Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
IEEE Journal on Selected Areas in Communications ; 41(1):107-118, 2023.
Article in English | Scopus | ID: covidwho-2245641

ABSTRACT

Video represents the majority of internet traffic today, driving a continual race between the generation of higher quality content, transmission of larger file sizes, and the development of network infrastructure. In addition, the recent COVID-19 pandemic fueled a surge in the use of video conferencing tools. Since videos take up considerable bandwidth ( ∼ 100 Kbps to a few Mbps), improved video compression can have a substantial impact on network performance for live and pre-recorded content, providing broader access to multimedia content worldwide. We present a novel video compression pipeline, called Txt2Vid, which dramatically reduces data transmission rates by compressing webcam videos ('talking-head videos') to a text transcript. The text is transmitted and decoded into a realistic reconstruction of the original video using recent advances in deep learning based voice cloning and lip syncing models. Our generative pipeline achieves two to three orders of magnitude reduction in the bitrate as compared to the standard audio-video codecs (encoders-decoders), while maintaining equivalent Quality-of-Experience based on a subjective evaluation by users ( n=242 ) in an online study. The Txt2Vid framework opens up the potential for creating novel applications such as enabling audio-video communication during poor internet connectivity, or in remote terrains with limited bandwidth. The code for this work is available at https://github.com/tpulkit/txt2vid.git. © 1983-2012 IEEE.

2.
Computer Systems Science and Engineering ; 44(2):1039-1049, 2023.
Article in English | Scopus | ID: covidwho-2238467

ABSTRACT

The demand for the telecommunication services, such as IP telephony, has increased dramatically during the COVID-19 pandemic lockdown. IP telephony should be enhanced to provide the expected quality. One of the issues that should be investigated in IP telephony is bandwidth utilization. IP telephony produces very small speech samples attached to a large packet header. The header of the IP telephony consumes a considerable share of the bandwidth allotted to the IP telephony. This wastes the network's bandwidth and influences the IP telephony quality. This paper proposes a mechanism (called Smallerize) that reduces the bandwidth consumed by both the speech sample and the header. This is achieved by assembling numerous IP telephony packets in one header and use the header's fields to carry the speech sample. Several metrics have been used to measure the achievement Smallerize mechanism. The number of calls has been increased by 245.1% compared to the typical mechanism. The bandwidth saving has also reached 68% with the G.28 codec. Therefore, Smallerize is a possible mechanism to enhance bandwidth utilization of the IP telephony. © 2023 CRL Publishing. All rights reserved.

3.
Computer Systems Science and Engineering ; 44(2):1039-1049, 2023.
Article in English | Web of Science | ID: covidwho-1929084

ABSTRACT

The demand for the telecommunication services, such as IP telephony, has increased dramatically during the COVID-19 pandemic lockdown. IP telephony should be enhanced to provide the expected quality. One of the issues that should be investigated in IP telephony is bandwidth utilization. IP telephony produces very small speech samples attached to a large packet header. The header of the IP telephony consumes a considerable share of the bandwidth allotted to the IP telephony. This wastes the network's bandwidth and influences the IP telephony quality. This paper proposes a mechanism (called Smallerize) that reduces the bandwidth consumed by both the speech sample and the header. This is achieved by assembling numerous IP telephony packets in one header and use the header's fields to carry the speech sample. Several metrics have been used to measure the achievement Smallerize mechanism. The number of calls has been increased by 245.1% compared to the typical mechanism. The bandwidth saving has also reached 68% with the G.28 codec. Therefore, Smallerize is a possible mechanism to enhance bandwidth utilization of the IP telephony.

4.
Journal of Image and Graphics ; 27(3):827-837, 2022.
Article in Chinese | Scopus | ID: covidwho-1789675

ABSTRACT

Objective: The corona virus disease 2019 (COVID-19), also known as severe acute respiratory syndrome coronavirus (SARS-CoV-2), has rapidly spread throughout the world as a result of the increased mobility of populations in a globalized world, wreaking havoc on people's daily lives, the global economy, and the global healthcare system. The novelty and dissemination speed of COVID-19 compelled researchers around the world to move quickly, using all resources and capabilities to analyse and characterize the novel coronavirus in terms of transmission routes and viral latency. Early and effective screening of COVID-19 patients and corresponding medical treatment, care and isolation to cut off the transmission route of the novel coronavirus are the key to prevent the spread of the epidemic. Due to the rapid infection of COVID-19, it is very important to screen COVID-19 threats based on precise segmenting lesions in lung CT images, which can be a low cost and quick response method nowadays. Rapid and accurate segmentation of coronavirus pneumonia CT images is of great significance for auxiliary diagnosis and patient monitoring. Currently, the main method for COVID-19 screening is the reverse transcription polymerase chain reaction like reverse transcription-polymerase chain reaction(RT-PCR) analysis. But, RT-PCR is time consuming to provide the diagnosis results, and the false negative rate is relatively high. Another effective method for COVID-19 screening is computed tomography (CT) technology. The CT scanning technology has high sensitivity and enhanced three-dimensional representation of infection visualization. Computed tomography (CT) has been used as an important method for the diagnosis and treatment of patients with COVID-19, the chest CT images of patients with COVID-19 mostly show multifocal, patchy, peripheral distribution, and ground glass opacity (GGO) which is mostly seen in the lower lobes of both lungs;a high degree of suspicion for novel coronavirus's infection can be obtained if more GGO than consolidation is found on CT images;therefore, detection of GGO in CT slices regions can provide clinicians with important information and help in the fight against COVID-19. The current analysis of COVID-19 pneumonia lesions has low segmentation accuracy and insufficient attention to false negatives. Method: Our accurate segmentation model based on small data set. In view of the complexity and variability of the targeted area of COVID-19 pneumonia, we improved Inf-Net and proposed a multi-scale encoding and decoding network (MED-Net) based on deep learning method. The computational cost may be caused by multi-scale encoding and decoding. The network extends the encoder-decoder structure in FC-Net, in which the decoder part is on the left column;The middle column is atrous spatial pyramid pooling (ASPP) structure;The right column is a multi-scale parallel decoder which is based on the improvement of parallel partial decoder. In this network structure, HarDNet68 is adopted as the backbone in terms of high resource utilization and fast computing speed, which can be as a simplified version of DenseNet, reduces DenseNet based hierarchical connections to get cascade loss deduction. HardNet68 is mainly composed of five harmonious dense blocks (HDB). Based on 5 different scales, We extract multiscale features from the first convolution layer and the 5 HDB sequential steps of HarDNet68 via a five atrous spatial pyramid pooling (ASPP). Meanwhile, as a new decoding component, a multiscale parallel partial decoder (MPPD) is based on the parallel decoder (PPD), which can aggregate the features between different levels in parallel. By decoding the branches of three different receptive fields, we have dealt with information loss issues in the encoder part and the difficulty of small lesions segmentation. Our deep supervision mechanism has melted the multi-scale decoder into the true positive and true negative samples analyses, for improving the sensitivity of the model. Result: Current COVID-19 CT Segmentation provides compl ted segmentation labels as a small data set. This research is improved based on Inf-Net, and the model structure is simple, the edge attention module(EA) is not introduced, and the reverse attention module(RA) is not quoted, only one MPPD is used to optimize the network stricture. The quantitative results show that MED-Net can effectively cope with the problems of fewer samples in the small dataset, the texture, size and position of the segmentation target vary greatly. On the data set with only 50 training images and 50 test images, the Dice coefficient is 73.8%, the sensitivity is 77.7%, and the specificity is 94.3%. Compared with the previous work, it has increased by 8.21%, 12.28% and 7.76% respectively. Among them, Dice coefficient and sensitivity have reached the most advanced level based on the same division mode of this data set. Simultaneously the qualitative results address that the segmentation result of the proposed model is closer to ground-truth in this experiment. We also conducted ablation experiments, that the use of MPPD has obvious effects to deal with small lesions area segmentation and improving segmentation accuracy. Conclusion: Our analysis shows that the proposed method can effectively improve the segmentation accuracy of the lesions in the CT images of the COVID-19 derived lungs disease. Our segmentation accuracy of MED-Net is qualified. The quantitative and qualitative results demonstrate that MED-Net is relatively effective in controlling edges and details, which can capture rich context information, and improve sensitivity. MED-Net can also effectively resolve the small lesions segmentation issue. For COVID-19 CT Segmentation data set, it has several of qualified evaluation indicators based on end-to-end learning. The potential of automatic segmentation of COVID-19 pneumonia is further facilitated. © 2022, Editorial Office of Journal of Image and Graphics. All right reserved.

5.
Diabet Med ; 38(10): e14549, 2021 10.
Article in English | MEDLINE | ID: covidwho-1109524

ABSTRACT

AIMS: Restrictions during the COVID-19 crisis will have impacted on opportunities to be active. We aimed to (a) quantify the impact of COVID-19 restrictions on accelerometer-assessed physical activity and sleep in people with type 2 diabetes and (b) identify predictors of physical activity during COVID-19 restrictions. METHODS: Participants were from the UK Chronotype of Patients with type 2 diabetes and Effect on Glycaemic Control (CODEC) observational study. Participants wore an accelerometer on their wrist for 8 days before and during COVID-19 restrictions. Accelerometer outcomes included the following: overall physical activity, moderate-to-vigorous physical activity (MVPA), time spent inactive, days/week with ≥30-minute continuous MVPA and sleep. Predictors of change in physical activity taken pre-COVID included the following: age, sex, ethnicity, body mass index (BMI), socio-economic status and medical history. RESULTS: In all, 165 participants (age (mean±S.D = 64.2 ± 8.3 years, BMI=31.4 ± 5.4 kg/m2 , 45% women) were included. During restrictions, overall physical activity was lower by 1.7 mg (~800 steps/day) and inactive time 21.9 minutes/day higher, but time in MVPA and sleep did not statistically significantly change. In contrast, the percentage of people with ≥1 day/week with ≥30-minute continuous MVPA was higher (34% cf. 24%). Consistent predictors of lower physical activity and/or higher inactive time were higher BMI and/or being a woman. Being older and/or from ethnic minorities groups was associated with higher inactive time. CONCLUSIONS: Overall physical activity, but not MVPA, was lower in adults with type 2 diabetes during COVID-19 restrictions. Women and individuals who were heavier, older, inactive and/or from ethnic minority groups were most at risk of lower physical activity during restrictions.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control , Diabetes Mellitus, Type 2/physiopathology , Motor Activity/physiology , Sleep/physiology , Accelerometry , Adolescent , Adult , Aged , COVID-19/epidemiology , Communicable Disease Control/methods , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/therapy , Female , Humans , Male , Middle Aged , SARS-CoV-2/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL